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A diffraction model for direct reactions which we proposed earlier is extended. The simple model provides 
physical insight into the effects of nuclear optical-model potential distortions without the necessity of per
forming complex numerical integrations. It is particularly useful, and can be qualitatively justified, for 
direct reactions when (1) strong absorption is present in both the incident and exit channels and (2) the 
center-of-mass wave function of the bound state involved corresponds to a small binding energy or to a long 
exponential tail. Thus, it is expected to be especially applicable to intermediate-energy complex-particle 
reactions such as the (He3,^) and (a,t) processes. In this paper, the forward-angle approximations made 
earlier are removed so that time-reversal symmetry is restored. Proper bound-state wave functions outside 
the nucleus are employed. Coulomb effects are briefly discussed. The assumptions of the model are thus made 
less drastic, but at the expense of decreasing mathematical simplicity. Predictions based on the earlier ver
sion are essentially unaffected, so that the simple forward-angle model remains useful up to moderately 
large angles. This is illustrated by comparisons with experiments. 

I. INTRODUCTION 

IN a recent article1 on double-stripping reactions, we 
proposed a simple (forward-angle) diffraction model 

for gaining some insight into distortion effects for 
reactions in which both incident and outgoing particles 
are strongly absorbed by the nucleus. This model was 
found to be very effective in explaining the dominant 
features of such processes as the (He3,^) reaction; but 
it is equally valid for («,«'), (d,p)9 (oi,d), (a,He3), 
(He3,d), (a,Li6) and other rearrangement or inelastic 
collisions in which the binding energy of the center of 
mass of the transferred or excited "system" is small. 
In particular, we were able to reproduce the forward-
angle differential cross sections and the trend of the 
transition probability toward stronger excitation of 
higher angular momentum states as the difference 
between the momenta of the incident and emergent 
particle increases. Our diffraction model is also applica
ble for high-energy elementary-particle collisions where 
many competing channels are open in both initial and 
final states.2 Most of our discussions, however, will 
be restricted to intermediate-energy direct nuclear 
reactions. 

The diffraction model described in HY1 involves 
several assumptions that might seem to make its 
validity questionable. For instance, the forward-angle 
approximation breaks time-reversal invariance and 
limits the applicability of the model to small scattering 
angles. 

In this paper, we remove most of the assumptions 
made in HY and demonstrate that this removal does 

* Supported in part by the U. S. Atomic Energy Commission 
under Contract A. T. (45-1) -1338, program B. 

1 E. M. Henley and D. U. L. Yu, Phys. Rev. 133, B1445 (1964). 
This paper is referred to as HY hereafter. 

2 See, for instance, L. D. Landau and Ya. Smorodinsky, Lectures 
on Nuclear Theory (Plenum Press, Inc., New York, 1959), pp. 
103-104; D. V. Bugg, A. J. Oxley, J. A. Zoll, J. G. Rushbrooke, 
V. E. Barnes et a!., Phys. Rev. 133, B1017 (1964); A. Dar, M. 
Kugler, Y. Dothan, and S. Nussinov, Phys. Rev. Letters 12, 82 
(1964). 
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not materially alter the predictions that the model is 
able to make. This strengthens our belief that the 
forward-angle diffraction model, even in its simple form, 
is useful for analyzing direct reactions, particularly 
when (a) both incident and emergent particles are 
strongly absorbed and (b) the center of mass of the 
bound state has a small binding energy. The latter 
criterion, when added to (a), allows us to justify our 
assumption that the dominant overlap between the 
initial and final states occurs outside the nucleus. Thus, 
what we mean by the criterion that the binding energy 
of the relevant bound-state wave function be small is 
that the characteristic falloff distance, or1 [see Eq. (3)] 
of the center of mass of the captured particles in 
stripping, for instance, be large compared to the mean 
free path of the incident or outgoing particle in the 
nucleus. This is not a strong condition for complex-
particle reactions [e.g., (He3,^),(a,J)], because the 
relative motion of the capture system generally cor
responds to a highly excited center-of-mass bound state 
in order that the relative motion have appreciable over
lap with the internal wave function of the incident 
particle (e.g., He3, a, above) for stripping. Nor is it a 
strong condition if the radial integrand of the reaction 
matrix happens to be a sharply peaked function, as in 
the case of inelastic scattering.3 

We shall first briefly recapitulate the previous as
sumptions and results. 

(a) A sharp boundary is assumed close to the nuclear 
surface. Strong absorption is taken to occur inside this 
region of radius R; outside of it distortion effects, other 
than the shadowing caused by absorption, are neglected. 
Our chief argument for this approximation (which we 
shall retain) is that for weakly bound states, most of the 
contribution to the distorted-wave matrix elements of 
the form 

9K,= <x/-|0,|x<+> (1) 

s J. S. Blair, Phys. Rev. 115, 928 (1959). 
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shaded regions in Fig. 1. Diffraction-like structure is 
exhibited in the cross sections 

FIG. 1. Pictorial representation of the forward-angle diffraction 
model. The incident wave propagates from a to a' and the outgoing 
wave along k. The diffraction radius is R. The incident beam is 
assumed not to penetrate the region with slanted lines of negative 
slope, whereas the shadow region for the outgoing particles is 
taken to be the region of lines with positive slope. 

arises from regions outside the nucleus.4 In Eq. (1), the 
x's are the scattering-state wave functions and cj>i is the 
bound state "form factor" characterized by an angular 
momentum Z.5 

(b) A WKB approximation is made; that is, the 
incident and emergent waves are assumed to propagate 
in straight lines and to be plane waves outside the 
absorption and shadow regions. For the incident wave 
the shadow is assumed to be a semi-infinite cylindrical 
region "behind" the sphere of radius R (Fig. 1). I t is 
true that there is a "healing distance" beyond which the 
beam is refracted and penetrates into the shadow again, 
but this is assumed to be far enough away that the 
exponential decrease of <j>i in Eq. (1) makes its effects 
negligible. 

(c) Coulomb effects are neglected. This assumption 
will not influence the cross section significantly as long 
as the incident energy is well above the Coulomb 
barrier of the target nucleus. 

(d) A forward-angle approximation is made on the 
geometry of the shadow for the emergent wave; hence, 
the axis of this shadow is assumed to coincide with that 
of. the incident wave so that the two shadow regions are 
mirror images of each other about the center of the 
nucleus (Fig. 1). In effect, there is an infinite cylindrical 
region which is completely inaccessible to the matrix 
element of Eq. (1). This assumption brings in a physical 
asymmetry which destroys time-reversal invariance 
except for forward scattering. However, this is expected 
to be unimportant for small scattering angles. 

(e) Since only the tail of the center of mass of the 
bound-state wave function is relevant in the spatial 
regions of interest, an asymptotic form is assumed for 
<t>i in Eq. (1); it is replaced by the zeroth-order spherical 
Hankel function exp(—ar)/r for all values of I. This 
allows the radial integration to be readily performed. 

With the above assumptions the overlap integral (1) 
can be easily evaluated in the entire space outside the 

4 In the distorted-wave calculations reported in HY, we found 
that cutting off the numerical radial integration at *v41/8+^, 
where d is the diffuseness of the optical potential, led to but a small 
change in the matrix element of the C12(He3,w)014 reaction. 

5 See, for instance, N. Austern, R. M. Drisko, E. C. Halbert, 
and G. R. Satchler, Phys. Rev. 133, B3 (1964). 
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with y = a—i(K—k cos#)cos#. In Eq. (2), K and k are, 
respectively, the incident and outgoing wave numbers, 
9 is the scattering angle and a is the inverse of the 
characteristic fall off distance for the bound-state 
asymptotic wave function $?; a can be related to a 
binding energy E by (h = c=l) 

a^(2 M £) 1 / 2 , (3) 

where /x is the reduced mass (relative to the nucleus) of 
the particle (s) transferred or excited in the reaction. 
The ©zw,s are directly related to the normalized spheri
cal harmonics by 

F r (#,<£)= {2>ir)-ll2®im(d)eim*. (4) 

Equation (2) shows that the angular distribution is 
characterized by cylindrical Bessel functions of all 
orders up to I. In the derivation of this result, a further 
forward-angle approximation is made, 

| k sin# sin# | <<C | y \ (5) 

This is consistent with assumption (c) and it restricts 
the validity of this model to angles fl^sin"1 (a/k). I t is 
worth noting that, unlike the Butler theory,6 this model 
predicts a forward peak for all / = 0 transitions, in
dependent of the momentum transfer, q= |K—k| . If 
the binding energy is sufficiently large (corresponding 
to a large value of a), the weighting factors for the 
various m substates peak strongly at # = J x , and the 
Fraunhofer nature of Eq, (2) becomes more apparent3 

— « E | / « ( W 2 s i n 0 ) e r ( | i r ) | 2 . (6) 
dQ, m 

In this case, only Bessel functions of even or odd orders 
up to I, depending on whether I is even or odd, enter into 
the cross section because of the properties of the 
spherical harmonics. Comparisons of the forward-angle 
model, Eq. (2), with some typical experiments,7-9 are 
shown in Figs. 2(a), (b), and (c). 

In the following section, we shall further develop the 
diffraction model, removing some of the approximations 
inherent in Eq. (2); time reversal symmetry will be 
restored; a properly normalized asymptotic bound state 

6 S. T. Butler, Proc. Roy. Soc. (London) A208, 559 (1951). 
7 R. Jahr, Phys. Rev. 129, 320 (1963). 
8 J. B. Ball, C. B. Fulmer, and C. D. Goodman, Phys. Rev. 130, 

2342 (1963). 
9 A. Isoya and M. J. Marrone, Phys. Rev. 128, 800 (1962). 
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FIG. 2. Three examples of the fit of Eq. (2) to experiments are shown: (a) ground-state transition for the F19(He3,fi?)Ne20 reaction 
(Ref. 7), (b) the Fe5 8(^)Fe5 6 reaction for 1 = 2 and 4 (Ref. 8); both curves are fitted with the same value of R, and (c) ground-state 
transition for the Si28(c^)Si29 reaction (Ref. 9). 

wave function will be used; a brief discussion of Cou
lomb effects will also be given. 

.005 

DWBA OF DIRECT REACTIONS 
V=50.0 MeV 

-1=0 W= 25.0 MeV 
v=o 

• ^ ' 0 20 40 60 80 100 120 
CENTER-OF-MASS ANGLE (degrees) 

FIG. 3. Typical distorted-wave Born approximation calculations 
of direct nuclear reactions without Coulomb interaction. V and W 
are the real and imaginary parts of the Saxon potential, <a is the 
energy spacing of a harmonic oscillator. Transitions for Z = 0, 2, 
and 4 are shown. 

II. FURTHER DEVELOPMENTS 

For charged projectiles, although we can, in principle, 
employ Coulomb waves for the scattering states and 
test their effects in terms of the diffraction model, it 
turns out to be simpler to appeal to distorted-wave 
calculations.1 In Fig. 3 we show the results of a typical 
calculation for a stripping or pickup reaction; angular 
distributions for 1=0, 2, and 4 are plotted; parameters 
for the optical potential also appear. In Fig. 4 we show 
the differential cross section that results when a Cou
lomb potential of barrier height ^40% of the incident 
energy is added. Comparison of Figs. 3 and 4 confirms 
that the Coulomb effects on the differential cross sec
tions are only secondary: Angular widths are slightly 
increased and magnitudes of cross sections somewhat 
depressed; these effects are expected on physical 
grounds. Morinigo10 has also estimated the Coulomb 
effects for stripping reactions with zero angular momen
tum transfer in Born approximation and found that 
only the magnitude of the cross section is slightly 
altered. For heavy elements, when the Coulomb barrier 
becomes comparable to the incident energy, some of 
these remarks concerning the neglect of the Coulomb 
effects lose their validity. However, for most cases for 
which the diffraction model is sensible, we feel that this 
neglect is justified and shall not, therefore, consider its 
effects further. 

As remarked earlier, the forward-angle approximation 

} F . B. Morinigo, Phys. Rev. 133, B65 (1964). 
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FIG. 4. The same distorted-wave Born approximation calcu
lations as those of Fig. 3, but with identical Coulomb interactions 
in the incident and exit channels. 

on the shadow geometry introduces an asymmetry 
between the incident and outgoing wave vectors, K and 
k; as a result, Eq. (2) shows that the requirement of 
time-reversal symmetry of the cross section is not 
satisfied except for 0=0°. Furthermore, the range of 
applicability of the model is limited to small scattering 
angles. We shall presently remove this approximation 
and show that its effect is small. Thus we consider the 
axes of the cylindrical shadows to lie parallel to their 
respective wave vectors. The geometry of the shadows 
becomes, instead of one infinite cylinder, two semi-
infinite cylinders tangent to the absorbing sphere. This 
is shown in Fig. 5(a). The angle between the axes of 

these shadows decreases as the scattering angle increases. 
In order to carry out the overlap integral (1) over the 

entire region outside the shadows, it is convenient to 
divide the open space into four subregions A, B, C, and 
D, also shown in Fig. 5(a). The boundaries, represented 
by dotted lines, are infinite planes perpendicular to the 
figure. The shadow geometry is completely symmetric 
about the #=0, 0 = 0 plane (labeled 0 in Fig. 5). This 
naturally restores the time-reversal symmetry since the 
cross section is invariant on interchanging the incident 
and emergent wave vectors and reversing their direc
tions. The bound-state wave functions <£* should be the 
Ith order spherical Hankel functions outside the range 
of the nuclear potential. However, for simplicity, we 
will temporarily continue to use their asymptotic form 
in order to investigate the effects due solely to the 
forward-angle approximation. (Properly normalized 
external wave functions will be employed later.) Hence 
the limits of integration for the four subregions can be 
written as follows: 

- J [ e-i^re-arYf^(^^y^rrdr sintWtMty , (7 ) 

with 

L-UniL+III.+IIfsIfL 
JO JO J Ra J ir JO J Rb 

/•IT fTT f*yO /»27T /»7T fOO 

+ + ' 
J 0 J ba J R J ir J 8b J R 

(8) 

where Ra and Rb are determined by the surfaces of the 
semi-infinite cylinders in A and B, which can be ex
pressed by the equations of constraint Ri sinyi=R 
(with i=a or 5). ya and 7& are the angles which the 
radius vector r makes, respectively, with the axes of the 

FIG. 5. Pictorial representation of 
the large-angle diffraction model. The 
shadow geometry is shown in (a) and 
the relevant vectors and angles are 
defined in (b). 

As 

(a) (b) 
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cylinders in A and B, and can be related to the scatter
ing angle by well-known trigonometric relations: 

cosYa,&=cos# sm(|0)=Fsin# cos(§0)sin#, (9) 

where—goes with a and + with b. The boundary planes 
between the regional pairs A, C, and B, D, [labeled (1) 
and (2), respectively, in Fig. 5] are also perpendicular 
to the cylinders a and b. The angles 8a and 5b in Eq. (8) 
characterize the geodesies at the intersections of these 
boundary planes and the absorbing sphere. They can 
also be related to the scattering angles, 

with the sign as in Eq. (9). Putting 

k«r=— kr cosYa, 

K T = 2 £ > C O S Y & , (ID 
and substituting Eqs. (4), (9), (10), and (11) into Eqs. 
(7) and (8), we have 

(12) 
with 

cot5a,6= Tcot( |0)s in0, (10) 

p=a—i (K+k) cos?? sin|0, 

q = i (K—k) sin# cos|0. (13) 

The radial integrals can be readily carried out and we obtain 

7T / » 5 0 

o JQ \p—q 

R \ exp[— (p—<\ sm<f)R CSCYJ 

f sm<£ smr/a/ 

+rr(-v-w) 
Jo Jda \p—Q sm<£ / 

JTT Jo \fi—q sm</> s u m / 

Yim*(£2)dtt 
p—q sin$ 

exp[— (p—q sin$)i£] 
Fr*(G)<K2 

^—q sin<£ 

R \ exp[ — (/>—q sin$) i? CSCY &] 

>̂—q sin$ 

J* Jsh \/>—qsin0 / 

Yf^itydto 

\ e x p [ - ( £ - q s i n < £ ) ] 

p—q sin</> 
7r*(0)rfQ. (14) 

Because of the geometrical symmetry, the integrands for the subregions B, D can be absorbed into those for sub-
regions A, C by a change of variable 

0 - ^ 0 + T T . (15) 

Under this transformation, 
5 & ->5 a , Rb->Ra. (16) 

Thus, the overlap integral becomes 

* = / " ( 2 T > 
Jo 

•)-V~*w*d^J / d#e~pBcM,yo0iw*(#)an# '(-V+A) 
A^—qsm<£ smYo/ 

i£ \ exp[qi£ sin<£ c s c y j 

+ (-!> \ £ + q sm<£ smYa/ 

( ( — 

R \ exp[—qi£ sin<£ CSCYJ' 

^ + q sin<£ 

\exp(qi?sin0) / 
2?)— ; +(-!)»(• 

>̂—q sm0 

+ / d#e-pR@im*(&)sm$ 

1 

p—q sin<£ / p—q sin$ 
)exp(—qi?sin<£)' 

: 
* . -, . P+q sm0 . 

• (17) 

The double integral is evaluated numerically on an 
IBM-709 computer. Results are shown in Figs. 6-10. 
Differential cross sections for 1=0, 2, and 4 transitions 
are compared with those of Eq. (2). I t is seen that for 
most transitions Eq. (2) is a good approximation to the 
angular distribution predicted by Eq. (17) at least up 
to 0=40°. We have also looked at the effect of only 
removing from Eq. (2) the approximation shown in 
Eq. (5) and found that the cross sections become even 
more closely akin to those that follow from Eq. (17). 

They are also plotted in Figs. 6-10 for comparison. For 
odd-Z states, Eq. (17) continues to predict a minimum 
in the cross section at 0°, as Eq. (2) did before. 

The above development thus generalizes in a natural 
manner the diffraction model introduced earlier. How
ever, much of the simplicity, other than Anschaulichkeit, 
has been lost, since a double numerical integration is 
required. The unique advantage over the forward-angle 
approximation of the model, is that it can be used for a 
wider region of angles. I t agrees, as it should, with the 
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DIFFRACTION MODELS OF DIRECT REACTIONS 

^ L > I . 
60 80 100 120 

ANGLE (degrees) 

FIG. 6. Prediction of the generalized diffraction model (labeled 
DVA), Eq. (17), for 1=0 with K=k = 1.0 F"1 and 22 = 5 F. This is 
compared with the forward-angle approximation (CYL), Eq. (2). 
The effect of removing the approximation of Eq. (5) is also shown 
(CYL1). 

forward-angle model for not too large angles (0<4O°). 
There are, however, other simpler ways in which time 

reversal can be preserved. One such method has re-

DIFFRACTION MODEL OF DIRECT REACTIONS 

" 0 20 40 60 80 100 120 
ANGLE (degrees) 

FIG. 7. Same as Fig. 6, but for 1 = 2. 

cently been discussed by Dar.11 It amounts to replacing 
kR sin# in the forward-angle approximation of our Eq. 
(2) by qR, where g== |K—k|. This ad hoc assumption is 
not justified by him, and it leads to a different prediction 
from ours for small angles which can be tested experi
mentally. Thus, Dar's treatment, unlike ours, does not 
necessarily give 0° peaking for all 1=0 transitions for 
which the model is applicable. It is true that a radius 
can be chosen such that Jo(qR) has a maximum at 0°. 
However, a variation of the experimental energy, for a 
given target, shifts the maximum of Jo(qR) to other 
angles (this assumes, of course, that R is energy-
independent). 

DIFFRACTION MODEL OF DIRECT REACTIONS 
a =I.0F" 
K=l.5F-» 
k=I.OF-« 
R=5.0F 
1=0 

60 80 100 120 
ANGLE (degrees) 

FIG. 8. Prediction of the generalized diffraction model (labeled 
DVA), Eq. (17), for 1=0 with K= 1.5 F"1, £ = 1.0 F"1 and R = S F. 
This is compared with the forward angle approximation (CYL), 
Eq. (2). The effect of removing the approximation of Eq. (5) is 
also shown (CYL1). 

We shall illustrate two simple methods of generalizing 
the forward-angle diffraction model, which preserve 
time-reversal invariance, and at the same time retain 
the forward peaking which appears to be observed 
experimentally12 (Fig. 2) in medium-energy reactions of 
the type we are discussing. Akin to an approximation 
suggested by Glauber,13 we consider the axis aar of the 
single infinitely long cylindrical shadow of Fig. 1 to lie 
along the vector,K+k, whose magnitude is invariant 
under time reversal. This algebraic symmetry restores 

11 A. Dar, Phys. Letters 7, 339 (1963). 
12 See, for instance, J. H. Manley, Phys. Rev. 130, 1475 (1963) 

and Refs. 7-9. 
13 R. J. Glauber, in Lectures on Theoretical Physics, edited by 

W. E. Brittin, B. W. Downs, and J. Downs (Interscience Publishers, 
Inc., New York, 1959), Vol. I, p. 345. 
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TR invariance to the computed matrix element, which 
then takes the form 

with 

- (2TT)1/2 / d&Jm(qR sin7 s i n # ) 0 r (#) 
o 

X e x p ( - / i ? csctf) (sm#+tR)/t2, 

(K/k) + cos6 

(18) 

shry = \ 1-
I <72Lr(si ?2L[(sm0/i<O2+ ( l /£+cos0/X) 2] 1 / 2 

(k/K) + cos6 - | 2 l l / 2 

[(sm6'/^)2+(l/ir+cosl9/^)2]1 /2 J 

and 
t=a—iq COSY cos#. 

(19) 

(20) 

Note that sinY vanishes at 0=0° so that for 1=0 there 
is always a forward peak independent of momentum 
transfer q. Again, if a is large, Eq. (18) leads to 

— * E | /w (? i?s inT )0zw ( i7r) | 2 . (21) 

Thus, our direct generalization, Eq. (18), of Eqs. (2) 
and (6) suggests that an approximate way to incorp
orate time-reversal invariance is to replace the factor 
k sin0 in the argument of the Bessel function by q sinY, 
and not by q alone, as one might at first sight assume.11 

In deriving Eq. (18), a forward-angle approximation 

1 . 5 -

tt 1.0 h 
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FIG. 9. Same as Fig. 8, but for 1 = 2. 

DIFFRACTION MODEL OF DIRECT REACTIONS 

I ̂  1 I L 
20 40 60 80 100 120 140 

ANGLE (degrees) 

FIG. 10. Same as Fig. 8, but for /=4. 

similar to Eq. (5) has been retained 

| 0 s i n 7 s i n # | « | * | . (22) 

The above choice is not unique. Thus, TR invariance can 
also be restored by other choices of geometrical sym
metry for the shadow regions. We can, for instance, 
consider the axis of the infinite cylindrical shadow to 
lie along the bisector of the scattering angle, that is, 
half-way between the wave vectors k and K. The ex
pressions for the cross sections are the same as those in 
Eqs. (18) and (20)-(22) while Eq. (19) is replaced in 
this case by 

sinY- [ 1 - (l/q2)(K~k)2 cos*£0]1/2. (23) 

We note again that Y = 0 when 0=0 . 
In the special case when K=k, the two ways of 

restoring time reversal give the same results. Also in 
this case the matrix element of Eq. (18) may be further 
simplified; thus, 

mr= (2iry*f<?d#Jm(qR stotf )©,*(*) 
X e-«R csc* ($in&+aR)/a2. (24) 

Due to the factor exp(—aR csc#), the integrand is 
strongly peaked at#=J71-, and we can write 

mm^(2T)^JM(qR)QiHhr) ( l + « * ) V « * , (25) 

where I0 is a number, 

Jo= / e~"R cscWc^7r exp(-3aR/2)J0(iaR/4:). (26) 
Jo 
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The corresponding cross section is 

\Jm(2kRsm^d)@im(iw)\\ 
dai i 

— «c £ (27) 

This differs from Eq. (6) in that the argument of the 
Bessel function is 2kR sin|0 instead of kR sin<?;14 it has 
the effect of sharpening the angular width of the differ
ential cross section, as the zeroth-order Bessel function 
reaches its minimum faster. In addition to time-reversal 
invariance and the 0° peaking in the cross section, Eqs. 
(18), (21), and (27) also give closer agreement to the 
shapes of the forward peaks predicted by the generalized 
diffraction model depicted in Fig. 5. Although the range 
of applicability of these equations is still limited to 
small scattering angles because of an assumption made 
in Eq. (22), this can be easily remedied. 

Finally, the asymptotic bound-state wave functions 
outside the range of the potential are the Zth (not only 
zeroth) order spherical Hankel functions of the first 
kind, hh which satisfy the recursion relation 

*w(p)+%i(p) = [ (a+ l ) /p ] i , (p ) , / > 0 , (28) 

with 

hi(P)=~i(-iyP
lWpdp)l(eip/p), (29) 

and p=iar. hi(p) is purely real or imaginary depending 
on whether / is even or odd. We match this exterior 
solution onto the interior radial nuclear wave function. 

DIFFRACTION MODEL WITH PROPER 
ASYMPTOTIC BOUND STATES 
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FIG. 11. Differential cross sections predicted by the diffraction 
model with spherical Hankel functions for <j>i are plotted for / = 0, 
2, and 4 with K=k = 1.0 F"1 and R = 5 F. 

14 Note that this says that only when K=k can kR sin0 be re
placed by qR at small angles for the argument of the Bessel 
function. 

For a direct single-particle excitation or transfer re
action, the inside wave function can be represented by 
an eigenfunction of a finite Saxon-type potential. For 
many-particle excitation or transfer reactions, it is more 
convenient to assume a shell-model infinite harmonic-
oscillator representation 9t»j(r) for the interior bound-
state wave function. The advantage of this choice is 
that the parts involving respectively the center of mass 
and the relative coordinates can be easily separated; 
only the center-of-mass part enters into Eq. (I).1 In 
this case normalization is completed in two steps: 

(a) We require continuity of the logarithmic de
rivative of the exterior and interior wave functions at 
the radius R, i.e. (we suppress the principal quantum 
number, n, of 8£nj) 

Z(d/dr)hi(ictr)yhi(iar) \ T=R 

= [(«/^)5RK0]/SRiW|r^. (30) 

This condition relates a to co, the oscillator energy-level 
spacing. 

(b) The entire wave function must be normalized, 
i.e., 

/ : 
\Wi(r)\*r>dr+ 

dii(R) 

hi(iaR) 

L X / \hi(iar)\2r2dr=-
' B I 

(31) 

This condition determines the modulus of the normali
zation constant Ax. Thus, the bound-state wave func
tion in Eq. (1) is 

fcto-^eWGW), r^R, 

= A, 
%(R) 

fc 

hi*(iaR) 
hi(iar)Yi™(&,(l>), r^R. (32) 

In an evaluation of the overlap integral only the external 
part (r^R) of Eq. (32) is relevant. 

We have shown previously that the forward-angle 
approximation of the shadow geometry does not signi
ficantly influence the magnitude and shape of the angu
lar distribution at small scattering angles. Thus, for this 
purpose, we continue to use the same shadow geometry 
as in Fig. 1, as this considerably simplifies the 
calculation. 

With plane waves for the scattering states outside the 
shadow region, the overlap integral becomes 

5KZ-=(2TT)-1/MZ*-
VUR) 

hi*(iaR) 

/•2x fir /•« 

Jo J 0 JR 

exp{ir[(K—k cos0)cos#—k sin0 sin?? cos<£]} 

Xhi^(iar)®im:i:^)e-im^r2dr siiufc&ftfy. (33) 
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FIG. 12. Same as Fig. 11 except 2T=1.S F"1, ife = 1.0 F"1. 

After performing an integration over the azimuthal 
angles <£, we have 

lr={2T)+^A^-
9tt(R) 

®im*(#)sm&d$ 
hi*(iaR)jQ 

/•oo 

X / Jm(Qr)hi*(iar)exp(il-rydr, (34) 
J R csct? 

where Q=k sinfl sin#, and &=K(l — k/K cosd). In order 
to restore time reversibility in Eq. (34), one merely has 
to replace Q by q sin7 sin#, where sin7 is given by Eq. 
(19) or by Eq. (23). 

Without further approximation, it does not appear 
that the double integral in Eq. (34) can be carried out 
analytically. However, a straightforward numerical 
integration on the IBM-709 can be used for its evalu

ation.15 Results for 7=0, 2 and 4 are shown in Fig. 11 for 
K=k=l F"1. As the difference between the two wave 
numbers increases, there is indication that enhancement 
to higher / transitions is predicted. This is brought out 
in Fig. 12, where K= 1.5 F"1 and k= 1 F"1. It should be 
noted, however, that this normalization procedure also 
changes the shapes of angular distributions when com
pared with the previous models. In particular, transi
tions for high Z's have broader forward peaks. This 
arises from the fact that higher order spherical Hankel 
functions fall off more slowly than the zeroth-order one 
and this has the effect of decreasing the value of a in 
Eq. (2) for these transitions. 

III. CONCLUSIONS 

The generalizations which we have made on a simple 
diffraction model for direct reactions, presented earlier,1 

show that the major conclusions based on the simple 
model persist. An example is the forward peak predicted 
for all zero-angular momentum transfer (/=0) reactions, 
independent of linear momentum transfer. We have 
argued that Coulomb effects are only secondary if the 
barrier height is below and not too close to the incident 
energy. Among the generalizations considered, the 
removal of the forward-angle approximation does not 
significantly change the predicted angular distributions. 
On the other hand, the use of spherical Hankel func
tions, rather than their asymptotic form, as bound-state 
wave functions broadens the angular distributions 
somewhat for higher I transitions. However, the use of 
correct external wave functions allows absolute cross 
sections to be computed. The observation that higher 
I transitions are enhanced as \K— k\ increases follows 
from this generalized model, as it did for the simpler 
model.1 

More work on the diffraction model will be directed 
toward a better understanding of why the model works 
as well as it does. In particular, assumptions (a) and 
(b) listed in Sec. I require further justification. 

™ The main disadvantage is that, since the integrands are highly 
oscillatory, a fine mesh is necessary and, consequently, a large 
amount of machine time is required for the integration. 


